JOURNAL: Image processing of computed tomography scanned poly-dispersed beds for computational fluid dynamic studies

Summary

Authors:

Stylianos Kyrimis
Robert Raja
Lindsay-Marie Armstrong

University of Southampton

Image processing of computed tomography scanned poly-dispersed beds for computational fluid dynamic studies

Advanced Powder Technology

November 2023

To achieve our emission reduction goals, we need to produce low carbon fuels and chemicals on a large scale. One way to do this involves using heterogeneous fixed bed chemical reactors, which require accurate Computational Fluid Dynamics (CFD) models for optimisation.

One crucial aspect in CFD simulations is accurately representing the 3D bed structure used in experiments. A direct connection between experiments and simulations can be achieved by scanning the experimental bed with computed tomography and reconstructing the scanned images as a 3D geometry for CFD simulations. However, it’s necessary to process the scanned images to refine the model and avoid overly coarse features that might affect the overall mesh size.

This study analyses a highly poly-dispersed lab-scale fixed bed reactor, previously scanned and analysed, using various image-processing techniques. The results reveal significant impacts on the reactor’s porosity, interparticle pore connectivity, and hydrodynamic behaviour. The generated results yield key insights towards a deeper understanding of the behaviour of fixed bed chemical reactors, which is highly valuable for optimising chemical reactors for industrial applications.